استفاده از رهیافت‌های شبکه‌های عصبی مصنوعی و سری زمانی در پیش‌بینی میزان مصرف انرژی الکتریکی در بخش کشاورزی

نویسنده

  • مهرزاد ابراهیمی عضو هئیت علمی دانشکده اقتصاد و مدیریت دانشگاه آزاد اسلامی واحد شیراز
چکیده مقاله:

هدف اصلی این مطالعه پیش بینی میزان مصرف انرژی الکتریکی در بخش‌کشاورزی است. برای این منظور از روش‌های سری زمانی خود توضیح جمعی میانگین متحرک(ARIMA) و شبکه ی عصبی مصنوعی استفاده شد. به منظور انجام بررسی، از داده‌های سالانه ی دوره ی 1346 تا 1383 برای برآورد و آموزش مدل‌ها و از داده‌های دوره ی 1384 تا 1387 به منظور بررسی قدرت پیش‌بینی مدل‌های مختلف استفاده شد. در این مطالعه معیارهای ارزیابی مختلفی شامل میانگین قدرمطلق خطا(MAE)، میانگین مجذور خطا(MSE) و درصد میانگین مطلق خطا(MAPE) مورد استفاده قرار گرفتند. نتایج مطالعه نشان داد که شبکه ی عصبی پرسپترون سه لایه با روش آموزش الگوریتم پس انتشار دارای MAPE معادل 02/1 درصد می‌باشد که کمتر از مقدار این آماره برای مدل سری زمانی است(13/1 درصد). سایر معیارهای خطا نیز نتایج یکسانی دارند و بر این اساس شبکه ی عصبی قادر است میزان مصرف برق در بخش کشاورزی را بهتر از مدل ARIMA پیش بینی نماید. لذا پیشنهاد می‌شود وزرات نیرو جهت پیش‌بینی‌های آتی خود از این روش استفاده نماید.  

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

استفاده از رهیافت های شبکه های عصبی مصنوعی و سری زمانی در پیش بینی میزان مصرف انرژی الکتریکی در بخش کشاورزی

هدف اصلی این مطالعه پیش بینی میزان مصرف انرژی الکتریکی در بخش کشاورزی است. برای این منظور از روش های سری زمانی خود توضیح جمعی میانگین متحرک(arima) و شبکه ی عصبی مصنوعی استفاده شد. به منظور انجام بررسی، از داده های سالانه ی دوره ی 1346 تا 1383 برای برآورد و آموزش مدل ها و از داده های دوره ی 1384 تا 1387 به منظور بررسی قدرت پیش بینی مدل های مختلف استفاده شد. در این مطالعه معیارهای ارزیابی مختلفی ...

متن کامل

مدل ریاضی جهت تخمین تابع مصرف انرژی الکتریکی با استفاده از روش سری زمانی

مطالعه روند تابع مصرف انرژی الکتریکی می تواند جهت تحلیل و همچنین پیش بینی مصرف برق در آینده مورد استفاده قرار گیرد . با برازاندن یک تابع به مصرف برق با توجه به معیارهای آماری ، و آگاهی از الگوی مصرف گذشته می توان یک ارتباط منطقی و ریاضی برای مصارف و سایر پارامترهای مؤثر بر آن پیدا کرد که جهت دستیابی به مصرف آینده برق کمک می نماید . هدف این مقاله ، برآوردن کردن تابع مصرف با توجه به روند گذشته ...

متن کامل

پیش بینی مصرف انرژی بخش کشاورزی ایران با استفاده از مدل ترکیبی الگوریتم ژنتیک و شبکه های عصبی مصنوعی

هدف از این مقاله ارزیابی الگوی ترکیبی شبکه­های عصبی مصنوعی و الگوریتم ژنتیک در پیش بینی تقاضای انرژی بخش کشاورزی ایران می­باشد. برای این منظور، از داده­های سالانه مصرف انرژی بخش کشاورزی کشور به عنوان متغیر خروجی مدل­های پیش­بینی و از داده­های سالانه جمعیت کل کشور و کل تولیدات بخش کشاورزی کشور به عنوان متغیرهای ورودی مدل­های پیش­بینی استفاده شد. در پایان به منظور مقایسه نتایج پیش­بینی مدل ترکیبی...

متن کامل

مدل‌سازی و پیش‌بینی ضایعات نان با استفاده از مدل‌های سری زمانی و شبکه‌های عصبی مصنوعی

دراین مطالعه به منظور بررسی عوامل مؤثر بر ضایعات نان و تعیین روابط کوتاه‌مدت، بلندمدت و ضریب تصحیح خطا بین ضایعات نان و متغیرهای مستقل مؤثر برآن طی سال‌های 1385-1357 و پیش‌بینی ضایعات نان از الگوی سری زمانی چند متغیره ARDL استفاده شده است. بر اساس الگوی ARDL ضایعات نان در بلندمدت تابعی مستقیم از تولید ناخالص ملی و رشد شهرنشینی می‌باشد و قیمت نان و ضریب جینی بر ضایعات نان اثر معکوس دارند. در کوت...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 4  شماره 13

صفحات  27- 42

تاریخ انتشار 2012-03-20

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023